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SUMMARY

A method is presented for predicting analytically the non-

linear variation of normal force with angle of attack for very

slender wing-body combinations exhibiting flow separation. The

method is based on the cross-flow drag concept and employs

Newtonian impact theory in two dimensions to calculate the

cross-flow drag coefficient. It is demonstrated that this

theory shows good agreement with. experiment for two-dimensional

incompressible flow past bluff shapes. Furthermore, the analyt-

ical expression for the flat plate agrees exactly with the theo-

retical analysis of Bollay.

Mathematical expressions are developed for the normal force

on a conical slender wing-body combination with elliptical body

of arbitrary eccentricity. Calculations are compared with experi-

mental normal forces on wing-body combinations at supersonic

speeds and on delta wings at subsonic speeds. The agreement

appears to be very good over a wide range of angle of attack,

provided that the slenderness approximation is satisfied and that

separation occurs near the lateral extremities of the configura-

tion in question. For the sharp-edged delta wing, the agreement

with experiment is better than for other theories.
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A aspect ratio, d02 /S

a local half-depth of body on wing-body combination
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ON THE USE OF IMPACT THEORY FOR SLENDER
CONFIGURATIONS EXHIBITING FLOW SEPARATION

1. INTRODUCTION

It has long been recognized that steady flow separation may

exist on slender configurations over a wide range of Mach number

and angle of attack. However, except for the cases of the low-

aspect-ratio rectangular wing and the low-aspect-ratio delta wing,

very little progress has been made in the analysis of separated

I flow over slender configurations in general. The rectangular

wing was first treated in a simple manner by Betz (Ref. 1) who

introduced the concept of using the "cross-flow drag coefficient"

of a two-dimensional flat plate placed normal to the stream. Then

in 1939, Bollay published a rigorous analysis of the flat rectan-

gular plate with side-edge separation (Ref. 2) in which he solved

an integral equation for the loading and determined the correspond-

ing normal force and the shedding angle of the separated vortices.

More recently, the slender delta wing with leading-edge sepa-

ration has been analyzed by a number of investigators (Refs. 3

through 7). in addition, the body of revolution with flow sepa-

ration has been treated by Allen and Perkins (Ref. 8), who use the

cross-flow drag concept and suggest that this concept be used to

predict the nonlinear lift curve for slender configurations in

general, using experimental values for the drag coefficient over

a two-dimensional body having the same shape as the cross-section

of the configuration in question. However, no analytical method

has yet been developed for predicting the required cross-flow drag

coefficient for general shapes.

In the present paper, a methodwill be presented for calcu-

lating the nonlinear normal force for general slender configura-

tions exhibiting flow separation, The method is based on the use

of Newtonian impact theory to determine the required cross-flow

drag coefficient. It will be demonstrated that this method yields

drag coefficients on two-dimensional bodies which are in good

agreement with experiment at low speeds, so long as the wake width

is essentially equal to the maximum lateral dimension of the body.
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J Calculations will be made of the resulting nonlinear lift curves

for a class of slender wing-body combinations which have been

tested over a range of supersonic Mach numbers. In addition, the

special case of the flat-plate delta wing will be calculated and

compared with other theories and with subsonic experimental data.

During the preparation of the present paper, a similar argu-

ment was published by Mysliwetz (Ref. 9) to show that Newtonian

theory may be used outside the Mach number range in which it cor-

rectly represents the physical flow. However, Mysliwetz's work

was confined to bodies of revolution and led him to a formula

which predicted a nonlinear term in the normal force, only if a

cylindrical afterbody is present. Therefore, his predicted normal-

force curve for a circular cone would be linear and would coincide

with that predicted by slender-body theory. This gives the correct

slope at a = 0 but fails completely to predict the nonlinear

viscous effects, which are appreciable at moderate angles of

{ attack. The approach presented in the present report does not

suffer from this shortcoming and evidently gives good predictibns

j of normal force over the entire practical angle-of-attack range,

not only for cones, but also for slender wings and wing-body

combinations of rather general cross section.

2. CROSS-FLOW DRAG CONCEPT
I

The leading term in the Prandtl-Glauert equation of linearized

I theory

S(i - M" 2) 0xx+ yy + zz =0(i)

can be neglected either if M c 1 (sonic flight) or if the con-

figuration is so slender that rates of change of the perturbation

velocities in the flight direction are negligibly small compared

with those normal to it (see Ref. 10). The problem is thereby

reduced to the two-dimensional one of Laplace's equation in planes

j normal to the flight direction. In Reference 11, R. T. Jones
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showed that for a slender, pointed flat plate this leads to the

following simple expression for the normal force:

SNA 7 - Aa (2)

where A is the aspect ratio.

Perhaps the first to attempt an analysis of the separated

flow on slender bodies at high angles of attack was Allen (Ref. 8),

who suggested that the linearized slender-body theory of Jones

(Ref. 11) and Ward (Ref. 12) be modified by the addition of a

quadratic term in the expression for the normal force. Thus,

CNA,0 = kc I + kc 2 = ka 1 + C D2 (3)

where k is the lift-curve slope given by slender-body theory

and k2 represents the "cross-flow drag coefficient" CDC which

is the drag coefficient of a two-dimensional body having the same

cross-sectional shape as the slender body in question. Allen

suggested that the value of CD be obtained from low-speed, two-Cc

dimensional wind-tunnel tests of various cross sections. He showed

an improvement over slender-body theory for the lift on a body of

revolution at high angles of attack. It is noted here that we use

lift and normal force interchangeably, since sample calculations

have shown that, for the lift-drag ratio of the delta wing through

the angle-of-attack range investigated herein, the maximum dif-

ference between lift and normal force is about 2 percent.

Since -the appearance of Reference 8, a number of attempts

have been made to investigate the validity of Equation (3) (e.g.,

Ref. 13), but there is as yet no analytical technique for calcu-

lating the coefficient CDC for slender bodies of general cross

section. The purpose of this report is to present such a method.

I



-4-

3. RELATION OF IMPACT THEOR`? TO BOLLAY'S ANALYSIS

A correlation of drag data on two-dimensional bluff bodies

of various cross sections inaicates that, so long as the cross

section is sufficiently bluff and the edges sufficiently sharp

so that separation occurs essentially at the side edges independent

of Reynolds number, then the wake has the same widthas the body

and the drag of the section is accurately given by Newtonian impact

theory. That is, for bodies of the type shown below,

V d

the drag is closely predicted by assuming that each elemental

particle of fluid strikes the body at the free-stream velocity

V and thereupon loses its normal component of momentum. This

leads to the well-known expression for the pressure coefficient:

C 2 sin 2 6 (4)

where 6 is the local angle which the forward-facing surface

makes with the free stream. Points on the rearward face (i.e.,

in the wake) are assumed to experience zero pressure coefficient.

The total drag coefficient of the cross section is then given by
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f d/2 d/2

CD D C2 f sin2 6 dy (5)D c 1 pV'd f 2

f p~ -d/2 _-d/ 2

where d is the span of the section measured normal to the free

stream. The resulting drag coefficients for several bluff cross

sections are given in Table I along with their corresponding

experimental values. It can be seen that, for sufficiently bluff,

symmetric bodies the correlation is quite good.

The drawback of the foregoing type of analysis is that a

fluid does not behave in the assumed manner at low subsonic speeds

in that the fluid particles are actually deflected far ahead of

the body, For that reason, the agreement between the above expres-

sions and experiment might be considered a coincidence. However,

in Reference 2, W. Bollay performed an aerodynamic analysis of

the forces acting on a low-aspect-ratio, rectangular wing at high

angles of attack in an incompressible fluid, with separation at

the side edges. In the limiting case of zero aspect ratio at 900

angle of attack, the normal force on Bollay's wing becomes the

drag on a two-dimensional flat plate normal to the stream. The

resulting equation for the normal force as a function of angle of

attack is identical with that predicted by Newtonian theory. That

is,

CNA=0 = 2 sin2 a (6)

and we find from Equation (3) that CD = 2 (note that k = 0

at A = 0, see Eq. (2)). Thus, Equation (5) is actually verified

by Bollay's mathematical analysis for the case of a flat plate,

and furthermore appears to be justified on an empirical basis for

other symmetrical, bluff shapes by the correlation of Table I.
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4. ANALYSIS OF SLENDER WING-BODY COMBINATIONS

On the basis of the foregoing argument, it is proposed that

the cross-flow drag coefficient CD of Equation (3) be calculatedCc

by means of Newtonian impact theory. Let us consider, for example,

a slender wing-body combination consisting of an elliptical body

and a wing with sharp leading edges as shown in the following sketch:

The corresponding two-dimensional flow problem to be solved for

CD is shown below. Separation at the wing leading edges is

assumed.

Vx
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We shall apply the impact theory by assuming no rebounding of

particles from the body onto the projecting flat plate, since this

would produce either crossing streamlines or secondary collisions

of particles, neither of which seems justified. Thus, there is no

wing-body interference, and the calculation is straightforward.

On the body proper, which we shall consider to be of elliptic cross

section, we have (see sketch above)

2 2
X2+ Y 2 (7)

a2 b2
a b

so that

tan 6b dy b2 () (8)
dx a2y

Thus, since

x _ aY b
x y--- 1 (9)

y b-/y 2

we find that

C pbody 2 sin2 6 b = 2 b2 b 2 _ a_2- (10)

Pbd b2 b 2 y (

for -b < y < +b.

Now, on the wing panels (i.e., for b < y < d/2 and

-d/2 < y < -b) where 6w = v/2, we have

C = 2 sin2 6 =2 (11)

Therefore, the cross-flow drag coefficient CDC for the wing-

body combination is, from Equations (5), (10), and (11),
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2 b d/2 dy

d Pbody b wn

b
2 2b... .. d y + 4 -d _b )

o b y -

S a2/b 2 t a 2 t 1 + 1 (12)
d a 32/2 2 a 2 2 -aI- 1) b-- 2

The above integration is valid for all values of the body eccen-

tricity a/b, although for a/b < 1 the inverse tangent of the

complex argument (a72/b2) - 1 then becomes the logarithm of the

real variable V1 - (a 2 /b 2 ). Equation (12) therefore gives the

value of CDC for a whole class of sharp-edged, slender wing-body

combinations for bodies of elliptic cross section.

It can be seen that Equation (12) properly approaches the

flat-plate value of CD = 2 if either a or b goes to zero.

5. NORMAL-FORCE CALCULATIONS

In this section, we shall consider a specific family of

conical, slender wing-body combinations for which the normal force

calculated by Equations (3) and (12) can be compared directly with

the systematic (supersonic) experiments of Reference 14. Also,

the limiting case of a = 0 (the flat-plate wing) will be con-

sidered and compared with subsonic experimental data and with

previously developed wing theories.
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5.1 Wing-Body Combinations

It has been shown in Reference 15 that for supersonic flow a

better approximation for the lift-curve slope at zero angle of

attack can be obtained by multiplying the slender-body value k 1

for the particular configuration by a factor ). This factor is

the ratio of the lift of the wing alone by linearized theory to

the lift by slender-body theory and is given by

E ( 1 1 t for P tan c < 1E ~ i -• tan2 E:

(subsonic leading edge)

or (13)

2 for P tan E > 1
v@ tan E

(supersonic leading edge)

where E( ) is a complete elliptic integral of the second kind.

We shall be concerned here only with the first form, since the

slenderness assumption is clearly violated if the wing leading

edges lie outside the Mach cone. Thus, we shall multiply the

slender-body lift-curve slope k by -A to obtain the linear1

term of Equation (3).

The slender-body lift-curve slope for wing-body combinations

with bodies of elliptical cross section has been given by Bryson

(Ref. 16) in the form

C 2 I (k2 + b2)x=. (14)CL S

1a
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j where

I= length of configuration

k a (a + b) 2

4 c

2= ( (s+ S 2 + a2  b2)

S - planform area

Therefore, multiplying this expression by ?\ of Equation (13),

we find the following equation for the normal force, according to

Equations (3), (12), and (14) :

CN = E ( - t ) (k 2 + b2) 1 ]

b\i J~ta a n 1 ) -x 1=

dr• a \ 2 b2 j
d4 2 /2 b 2 a22

b bJ

(15)
5.2 Limiting Case of Flat-Plate Wing

As noted previously, the cross-flow drag coefficient of Equa-

tion (12) approaches a value of 2.0 as the body thickness term a

approaches zero and the wing-body combination becomes a flat plate.

This limiting case is considered for subsonic flow since the

majo~rity of the available data for sharp-edged delta wings for

which lift or normal force was measured have been obtained for

the subsonic regime. The values for the linear term of Equation (3)

are therefore obtained from the subsonic linearized lift-curve

slopes determined by Truckenbrodt in Reference 17. The subsonic

normal force coefficient for a low-aspect-ratio, flat-plate wing

is then,

I
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CN CL (linearized) a + 2 2  (16)

where values of CL are given as a function of aspect ratio in

Figure 
1.

6. COMPARISON WITH EXPERIMENT

6.1 Wing-Body Combinations

Calculations have been carried out with Equation (15) for

the normal force on the following conical wing-body combinations:

a/b A 0M Fig. No.

1.0 0.544 1.0 1.97, 2.94 2, 4

.362 1.5 1.97 3

3.0 .316 1.0 1.97, 2.94 5, 7

.210 1.5 1.97 6

.333 .946 1.0 1.97, 2.94 8, 10

.630 1.5 1.97 9

The resulting normal-force curves are presented in Figures 2,

3, and 4 for the circular body (a = b), and it can be seen that

the agreement with experiment is best for the lower aspect ratio

at the lower Mach number (Fig. 2). This is to be expected since

these are the cases which most nearly satisfy the slender-body

assumption of Equation (3) that the wing leading edges lie well

within the Mach cone. For aspect ratio 1 at M = 1.97 (Fig. 2),

the departure from linear theory is seen to be substantial (about

20 percent at a = 80) , whereas the present theory shows good

agreement with experimental data up to about 150 angle of attack.

Both the higher aspect ratio (A = 1.5, M = 1.97, (Fig. 3)) and

the higher Mach number (M = 2.94, A = 1.0, (Fig. 4)) show less
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satisfactory agreement at the higher angles of attack. In fact,

for the higher aspect ratio (A = 1.5, M = 1.97, (Fig. 3)) the

linear theory is actually somewhat better at the higher angles

than the nonlinear expression of Equation (15), with experiment

falling between the two. The higher aspect ratio at the higher

Mach number (A = 1.5, M = 2.94) was not calculated, since the

leading edges are actually slightly supersonic in that case and

the present theory is clearly not applicable.

For wings with elliptic bodies (a ;6 b (Figs. 5 to 10)),

again the best agreement is obtained at the lower Mach number

(Figs. 5, 6, 8, and 9). However, the effect of aspect ratio on

the agreement is not so pronounced (compare Fig. 5 with Fig. 6),

and a rather surprising effect of body eccentricity is noted.

That is, with the major axis of the ellipse oriented vertically

(a/b = 3 (Fig. 6)), the agreement between the present theory and

experiment at the lower Mach number and lower aspect ratio is again

very good up to angles of attack of about 150° However, with the

elliptic body oriented with its major axis horizontal (a/b = 0.33

(Fig. 8)), the agreement is not nearly as good. In fact, the

linear theory seems to be better up to about 100 angle of attack!

On the other hand, it was shown in Table I that impact theory agrees

better with two-dimensional experiments if the major axis of the

ellipse is normal to the stream. These two observations appear

to be contradictory. However, it is pointed out that, for the

slender wing-body combination with the ellipse horizontal, the

wing leading edges just barely protrude from the body. It would

therefore appear that the wing may be acting as a boundary-layer

trip in the cross-flow plane and thereby fixes transition and

delays cross-flow separation. Thus, the wake width, and conse-

quently the cross-flow drag, is reduced (see sketch).
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I

--- Actual wake

~-Assumed wake

This would, of course, reduce the total normal force and produce

a flow pattern more closely approximated by the attached-flow

(linearized) theory.

6.2 Limiting Case of Flat-Plate Wing

Calculations have been carried out using Equation (16) for

the normal force on flat-plate delta wings of aspect ratio 0.78,

1.5, and 2.0. The resultincrcu'rves of normal force versus

angle of attack are presented in Figures 11(a), 11(b), and 11(c).

It can be seen that the agreement with experiment is quite good,

especially at the lower aspect ratios, which more nearly corre-

spond to the slender-body assumption of Equation (3). The present

theory clearly agrees better with experimental data than either

the linear theory of Truckenbrodt (Ref. 17) or that of Jones

(Ref. 11). Furthermore, it gives better agreement than any of

the nonlinear theories developed from the separation vortex models

of Gersten (Ref. 18) , Brown and Michael (Ref. 3), or Mangler and

Smith (Ref. 7). In Reference 13, Bartlett and Vidal arrive empir-

ically at the same result as the present analysis for the special

case of the sharp-edged delta wing. It is noted that for these
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data and theories, the normal force and lift have been used

interchangeably. This was necessary because the theories predict

either lift or normal force and do not include expressions for

drag which would be required to convert from lift to normal force

or vice versa. However, as stated previously, the maximum dif-

ference between lift and normal force for the cases investigated

here is approximately 2 percent.

It seems clear, then, that the present theory works quite

well so long as the leading edges are well within the Mach cone

and provided that separation does actually occur along the wing

leading edges.

7. CONCLUDING REMARKS

A method has been presented for calculating the nonlinear

lift curve for general slender configurations exhibiting steady

flow separation. The method is based upon the observation that

Newtonian impact theory yields good estimates for the low-speed

drag of bluff bodies, and uses this theory to calculate the

required cross-flow drag coefficient. A quadratic term in the

angle of attack is thus obtained for adding the effect of viscous

cross-flow to the lift calculated by linear theory.

Mathematical expressions have been developed for predicting

the normal force on a class of conical, slender wing-body combina-

tions with bodies of elliptic cross section. The calculations

have been compared with experimental normal-force measurements

over a range of supersonic Mach numbers, and it was found that

the agreement is generally quite satisfactory up to about 
12 0

angle of attack, provided that the leading edges lie well within

the Mach cone and that separation does occur along the wing lead-

ing edges.

Calculations were also made for sharp-edged flat-plate delta

wings of several aspect ratios and compared with experimental

data at low subsonic speeds. It was found that the present theory
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agrees well with experiment up to about 200 angle of attack and

shows better agreement than do any of the previously existing

f theories for delta wings with leading-edge separation.

I

I

I

I



-16-

t REFERENCES

1. Betz, A.: Applied Airfoil Theory. Div. J, Chapt. 3, vol. 4,
Aerodynamic Theory, Ed. W. F. Durand, Springer, Berlin, 1935,
pp. 69-70.

2. Bollay, W.: A Non-linear Wing Theory and its Application to
Rectangular Wings of Small Aspect Ratio. Z. Angew. Math.
Mech. Bd. 19 Nr., 1 Feb. 1939.

3. Brown, C. E. and Michael, W. H.: On Slender Delta Wings with
Leading-Edge Separation. NACA TN 3430, Apr. 1955.

4. Legendre, R.: Ecoulement au Voisinage de la Pointe Avant d'une
Aile Forte Fleche Aux Incidences Moyennes. La Researche
Aeronautique (ONERA), no. 30, 1952, and no. 35, 1953.

5. Adams, M. C.: Leading-Edge Separation from Delta Wing at
Supersonic Speeds. Readers' Forum, Jour. of Aero. Sci.,
vol. 20, no. 6, June 1953, p. 430.

6. Edwards, R. H.: Leading-Edge Separation from Slender Delta
Wing. Readers' Forum, Jour. of Aero. Sci., vol. 21, no. 2,
Feb. 1954, pp. 134-135.

7. Mangler, K. W. and Smith, J. H. B.: The Theory of Slender
Delta Wings with Leading-Edge Separation. RAE TN Aero 2442.

8. Allen, H. J. and Perkins, E. W.: A Study of Effects of
Viscosity on Flow Over Slender Inclined Bodies of Revolution.
NACA Rept. 1048, 1951.

9. Mysliwetz, Fritz: Body Lift and Newtonian Theory. IAS Paper
No. 62-113 presented June 19-22, 1962.

10. Heaslet, M. A. and Lomax, H.: Supersonic and Transonic
Small Perturbation Theory. Section D. General Theory of
High Speed Aerodynamics, vol. VI, Princeton Univ. Press,
Princeton, New Jersey, 1954.

11. Jones, R. T.: Properties of Low-Aspect-Ratio Pointed Wings
at Speeds Below and Above the Speed of Sound. NACA Rept. 835,
1946.

12. Ward, G. N.: Linearized Theory of Steady High-Speed Flow.
Cambridge Monographs on Mechanics and Applied Mechanics,
Cambridge Univ. Press, 1955.



-17-

13. Bartlett, G. E. and Vidal, R. J.: Experimental Investigation
of Influence of Edge Shape on the Aerodynamic Characteristics
of Low Aspect Ratio Wings at Low Speeds. Jour. Aero. Sci., Svol. 22, no _ 8, Aug . 1955.

14. Jorgensen, L. H.: Elliptic Cones Alone and with Wings at
Supersonic Speeds. NACA TN 4045, Oct. 1957.

15. Nielsen, J. N., Katzen , E. D., and Tang, K. K.: Lift and
Pitching Moment Interference Between a Pointed Cylindrical
Body and Triangular Wings of Various Aspect Ratios at Mach
Numbers of 1.50 and 2.02. NACA TN 3795, 1956.

16. Bryson, A. E.: Stability Derivatives for a Slender Missile
with Application to a Wing-Body-Vertical-Tail Configuration.
Jour. of Aero. Sci., vol. 20, no. 5, May 1953.

17. Truckenbrodt, E.: Theoretical and Experimental Investigations
on Swept and Delta Wings in Symmetrical Flow. OSR-TR-54-23,
1954.

18. Gersten, K.: Nichtlneare Tragflachentheorie insbensondere
fur Tragfl~igel mit kleinem Seitenverhaltnis, Ingenieur-
Archiv, 30. Band, 6. Heft, 1961, S. 431-452.

19. Hoerner, S. F.: Fluid Dynamic Drag. Published by the author,
New Jersey, 1958.

20. Lindsey, W. F.: Drag of Cylinders of Simple Shapes.
NACA Rept. 619, 1938.

21. Delany, N. K. and Sorensen, N. E.: Low-Speed Drag of Cylinders
of Various Shapes. NACA TN 3038, 1953.

22. Goldstein, So: Modern Developments in Fluid Dynamics, Chapt. :r,
vol. I. Oxford at the Clarendon Press, 1952.

I



TABLE I.- DRAG COEFFICIENT OF TWO-DIMENSIONAL BODIES
IN INCOMPRESSIBLE FLOW AS GIVEN BY NEWTONIAN THEORY
AND EXPERIMENT.

Cross section CDtheo CDexp. Experimental ref.

d 2.00 1.98 19

S2:1 1.65 1.7 20, 21

IA
2:1 1.6 1.8 21

j 150

\ 1.94 2.28 20

15°

I - " 2.00 1.90 20

1:2 .4 1.00 21

I
I d 1.2 .95 .7 19, 20, 21

I0Q 1.33 1.20 22

1..

!
I

I
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Figure 1.- Subsonic lift-curve slope according
to linearized theory (Ref. 17).



.8 I

.7

.6

0 Data of Jorgensen (Ref. 14)
.5

'44 g4W .4)

0)
U

0

, .3

ru

0z

S/ Ziertheory
.2

0 4 8 12 16 20

a, degrees

Figure 2.- Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.0 at M

=1.97 (=1)>



i
.8

.7 _ _ _ _ _

I<
.6

Eq. (15)

0 Data of Jorgensen (Ref. 14)

. .5

0 .400

' U

o9

S-4

.3 _ _ _

0 f , inear theory

.2

.1.

0
0 4 8 1.2 16 20

a, degrees

Figure 3.- Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.5 at M

= 1.97
(b



.8

.7

.6

z 0 Data of Jorgensen (Ref. 14)

C-)-
4J .51 _ _ _ _ _ _

C.)

-44

0
S.4

w ~Eq. (15)U°

0
14__

-I

o 0z

Linear theory

.i

0 204 8 12 16 20

a, degrees

Figure 4. - Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.0 at M

2.94 ( = 1)



.8

.7

j .6

SKData of Jorgensen (Ref. 14)iU

4 .5

w

C-)

0
oo .4C)4

0

0 3 Eq. (15)
z

Linea r theory

.2

0 4 8 12 16 20

a, degrees

Figure 5. - Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.0 at M

00

=1.97 =3)

I



.8

.7-

.6

K<Data of Jorgensen (Ref. 14)

.5-- Ii

0

U-) -

.4
U4 Eq,•(15)
0 E ( Linear theory
I

1- .3
0

.2

.1

0 4 8 12 16 20

a, degrees

Figure 6. - Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.5 at M

= 1.97 = 3)



i

.8 II

j -

I\

.6

OData of Jorgensen (Ref. 14)

z

., .5

4-4o *

0 .4
Eq. (15)o

0

'• .3

.2

Linear theory

.1

0 4 8 12 16 20

a, degrees

Figure 7. - Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.0 at M

=2.943)



S~.8

j .7 m

.6

z [ Data of Jorgensen (Ref. 14)

2 .5-

U .4
Eq. (15)

0

I I

r .3
0
z

Linear theory

.2

.1

0 4 8 16 20

a, degrees

Figure 8. - Theoretical and experimental normal force for
slender ing-body combination of aspect ratio 1.0 at M

=1.97



.8

.7

El Data of Jorgensen (Ref. 14)

z .5

0 .

U

SEq. (15)
UI
5-4
0 Linear, theory

.3O/.3

.2

0

4 8 12 2(

a, degrees

Figure 9.- Theoretical and experimental normal force for
slender wing-body combination of aspect ratio 1.5 at M

1.97



.8

.7

.6

l]Data of Jorgensen (Ref. 14)

z
.5

Ea. (15)

o.40
U

.4 _ _ .

S. 3

0

z Linear theory

.2

O.1

0 4 8 12 16 20

a, degrees

Figure 10.- Theoretical and experimental normal force for

slender wing-body combination of aspect ratio 1.0 at M

=2.94 300



- 1.8

1.6

O Data from Gersten (Ref. 18)

1.4

I
z

U 1.2

4-)w

CQ)

4444

C-)
0)

ý4-

Present theory (Eq. (16))

ý4 .6 -$Gersten (Ref. 18)
0

7 Brown & Michael (Ref.
7 <Jones (Ref. 13)

.4 Truckenbrodt (Ref. 19)
-Mangler & Smith (Ref.

.2.

0-

0 4 8 12 16 20 24 28

a., degrees

(a) A = 0.78.

Figure 11.- Theoretical and experimental normal force for
flat-plate delta wings.



i
I

1.6'

Data from Bartlett Mangler&
El and Vidal (Ref. 13) & Smith (Ref. 7)

4Brown & Michael (Ref, 3)

1.2 ... . .
Present (Eq. (16))

Utheory

I>h 
o__ ry

I 0
0

H .

LI 1 Truckenbrodt (Ref. 17)

• I-
.27

0 4 8 12 16 20 24

S, degrees

(b) A = 1.5.

Figure l1.- Continued.



2.0__ __ _

1.6 -______ Brown and Michael (Ref. 3)

1.4 - -- -Jones (Ref. II)
IMangler and Smith /I

(Ref. 7 Present-theory

(Eq. (16))

'4-I '
'4-4

I I ,'(Ref. 17)

L011

z .6__- 
_ __

SData from Bartlett
and Vidal (Ref. 13)

'.2 - - _ _ -{-

0 4 8 12 16 20 24 28 32

a, degrees

(C) A =2

Figure 11.- Concluded.



APPROVED DISTRIBUTION LIST

CONTRACT Nonr-3103(00)

Chief, Bureau of Naval Weapons Chief of Naval Research (Code 438)
(RAAD-3) Department of the Navy
Department of the Navy Washington 25, D. C.
Washington 25, D. C.

Commanding Officer
Chief, Bureau of Naval Weapons Office of Naval Research Branch Offi
(RAAD-33) Navy #100, Box 39, F. P. 0.
Department of the Navy New York, New York
Washington 25, D. C. ATTN: Head, Documents Section

(2 copies)

Chief, Bureau of Naval Weapons
(RAAD-34) Commanding Officer
Department of the Navy Office of Naval Research Branch Offi
Washington 25, D. C. 346 Broadway

New York 13, New York
Chief, Bureau of Naval Weapons
(RA-4) Commanding officer
Department of the Navy Office of Naval Research Branch
Washington 25, D. C. 86 E. Randolph Street

Chicago 1, Illinois
Chief, Bureau of Naval Weapons
(R-55) Commanding Officer
Department of the Navy Office of Naval Research Branch Offi
Washington 25, D. C. 1030 E. Green Street

Padadena, California
Chief, Bureau of Naval Weapons
(RR-25) Director
Department of the Navy Naval Research Laboratory
Washington 25, D. C. Technical Information office

Washington 25, D. C. (6 copies)

Chief, Bureau of Naval Weapons
(RRRE-4) Commander
Department of the Navy Army Material Command
Washington 25, D. C. Department of the Army

Washington 25, D. C.
Commanding Officer and Director ATTN: AMCRD-RS-PE-A (2 copies)
David Taylor Model Basin
Aerodynamics Laboratory Commanding Officer
Washington 25, D. C. U. S. Army Transportation Research

Command
Chief of Naval Research (Code 461) Fort Eustis, Virginia
Department of the Navy ATTN: SMOFE-TD (1 copy)
Washington 25, D. C. (6 copies) ATTN: Research Reference Center

(1 copy)



!
-Army Research Center National Aeronautics and Space

Physical Sciences Division Administration
3045 Columbia Pike Ames Research Cent~er

- Arlington 4, Virginia Moffett Field, California
NATTN: Mr. R. Ballard ATTN: Mr. W. Cook, 40x80 Tunnel

U. S. Air Force (SRGL) office of Technical Services
SOffice of Scientific Research Department of Commerce

Washington 25, D. C. Washington 25, D. C.

I Aeronautical Systems Division Library
Deputy for Technology American Institute of Aeronautics an
Wright-Patterson AFB, Ohio Astronautics
ATTN: ASRSMS 2 East 64th Street

New York 21, New York (2 copies)
Aeronautical Systems Division
Deputy for Technology Bell Helicopter Company
Wright-Patterson AFB, Ohio P. 0. Box 482
ATTN: ASRSSC Fort Worth 1, Texas

ATTN: Mr. Robert Lynn
Aeronautical Systems Division
Deputy for Technology Cornell Aeronautical Laboratory, Inc
Wright-Patterson AFB, Ohio 4455 Genesee Street
ATTN: ASRMDF Buffalo 21, New York

ATTN: Mr. Frank duWaldt
Aeronautical Systems Division
Deputy for Systems Management Collins Radio Company
Support Systems Programs Office Cedar Rapids, Iowa
Wright-Patterson AFB, Ohio ATTN: Dr. A. Lippisch
ATTN: ASZT

Georgia Institute of Technology
Armed Services Technical Information Guggenheim School of Aeronautics
Agency Atlanta 13, Georgia

Document Service Center ATTN: Mr. D. W. Dutton
Arlington Hall Station
Arlington 12, Virginia (20 copies) Hiller Aircraft Curporation

Advanced Research Division
National Aeronautics and Space 1350 Willow Road
Administration Palo Alto, California

1512 H Street N. W. ATTN: Mr. Raymond Lockwood
Washington 25, D. C.
ATTN: Mr. J. Brewer, Code RA Massachusetts Institute of Technolog:

Aeronautical Engineering Department
National Aeronautics and Space Cambridge 30, Massachusetts
Administration ATTN: Professor R. H. Miller

1512 H Street N. W.
Washington 25, D. C. McDonnell Aircraft Corporation
ATTN: Mr. N. F. Rekos, Code RAP St. Louis, Missouri

ATTN: Dr. Kurt Hohenemer
National Aeronautics and Space
Administration Mississippi State University

Langley Research Center Engineering and Industrial Research
Langley AFB, Virginia Station
ATTN: Mr. Donnelly State College, Mississippi

ATTN: Dr. J. J. Cornish

,\



Naval Postgraduate School
Aeronautical Engineering Department
Monterey, California
ATTN: Dr. R. Head

Princeton University
Aeronautical Engineering Department
James Forrestal Research Center
Princeton, New Jersey
ATTN: Professor David C. Hazen

Sikorsky Aircraft Division
United Aircraft Corporation
Stratford 1, Connecticut
ATTN: Mr. Philip Michel

Syracuse University
Mechanical Engineering Department
Syracuse, New York
ATTN: Dr. S. Eskinazi

Therm Advanced Research Division
Therm, Inc.
Ithaca, New York
ATTN: Dr. Ritter

Vehicle Research Corporation
1661 Lorbardy Road
Pasadena, California
ATTN' Dr. Scott Rethorst

University of Virginia
Aeronautical Engineering Department
Charlottesville, Virginia
ATTN: Dr. G. B. Matthews

Vertol Division
Boeing Airplane Company
Woodland Avenue
Morton, Pennsylvania
ATTN: Dr. W. Z. Stepniewski

Vidya Division
Itek Corporation
1450 Page Mill Road
Stanford Industrial Park
Palo Alto, California
ATTN: Dr. J. N. Nielsen


